Compare commits

...

3 Commits

Author SHA1 Message Date
303f008b6f Fixes
- Switch to using PCRE for ts predicate matching
- Fix/use shebang hl for ruby and bash grammars
2025-12-10 19:49:09 +00:00
774a21241e Style fixes 2025-12-10 19:10:12 +00:00
bc67d2e682 Make tree-sitter read function utilize faster rope reading
- By removing any allocations/deallocation that the function would have used
2025-12-10 18:02:37 +00:00
9 changed files with 250 additions and 115 deletions

View File

@@ -281,7 +281,7 @@
(extglob_pattern) (extglob_pattern)
] @string.regexp ] @string.regexp
;; #fbb152 #000000 0 0 0 3 ;; #51eeba #000000 0 0 0 3
((program ((program
. .
(comment) @keyword.directive @nospell) (comment) @keyword.directive @nospell)

View File

@@ -245,23 +245,11 @@
;; #AAAAAA #000000 0 1 0 1 ;; #AAAAAA #000000 0 1 0 1
(comment) @comment (comment) @comment
(program ;; #51eeba #000000 0 0 0 3
(comment)+ @comment.documentation ((program
(class)) .
(comment) @shebang @nospell)
(module (#match? @shebang "^#!/"))
(comment)+ @comment.documentation
(body_statement
(class)))
(class
(comment)+ @comment.documentation
(body_statement
(method)))
(body_statement
(comment)+ @comment.documentation
(method))
;; #ffffff #000000 0 0 0 1 ;; #ffffff #000000 0 0 0 1
[ [

View File

@@ -104,11 +104,6 @@ struct Editor {
// - built by tree-sitter helpers // - built by tree-sitter helpers
}; };
typedef struct TSLoad {
Editor *editor;
char *prev = nullptr;
} TSLoad;
Editor *new_editor(const char *filename, Coord position, Coord size); Editor *new_editor(const char *filename, Coord position, Coord size);
void free_editor(Editor *editor); void free_editor(Editor *editor);
void render_editor(Editor *editor); void render_editor(Editor *editor);

View File

@@ -36,6 +36,7 @@ typedef struct LeafIterator {
Knot *node; Knot *node;
uint8_t top; uint8_t top;
uint32_t offset; uint32_t offset;
uint32_t adjustment;
Knot *stack[64]; Knot *stack[64];
} LeafIterator; } LeafIterator;
@@ -122,13 +123,15 @@ char *next_line(LineIterator *it);
// Used to start an iterator over leaf data // Used to start an iterator over leaf data
// root is the root of the rope // root is the root of the rope
// the caller must free the iterator after use // the caller must free the iterator after use
LeafIterator *begin_k_iter(Knot *root); // start_offset is the byte from which the iterator should start
LeafIterator *begin_k_iter(Knot *root, uint32_t start_offset);
// Returns the next leaf data as a null terminated string // Returns the next leaf data as a null terminated string
// `it` is the iterator returned from begin_k_iter // `it` is the iterator returned from begin_k_iter
// ! Strings returned must never be freed by the caller ! // ! Strings returned must never be freed by the caller !
// to mutate the string a copy must be made // to mutate the string a copy must be made
char *next_leaf(LeafIterator *it); // `out_len` is set to the length of the returned string
char *next_leaf(LeafIterator *it, uint32_t *out_len);
// Used to start an iterator over byte data (one byte at a time) // Used to start an iterator over byte data (one byte at a time)
// Uses leaf iterator internally // Uses leaf iterator internally
@@ -140,6 +143,13 @@ ByteIterator *begin_b_iter(Knot *root);
// `it` is the iterator returned from begin_b_iter // `it` is the iterator returned from begin_b_iter
char next_byte(ByteIterator *it); char next_byte(ByteIterator *it);
// Returns a leaf data as a null terminated string
// root is the root of the rope
// start_offset is the byte from which the leaf data should start
// `out_len` is set to the length of the returned string
// return value must never be freed
char *leaf_from_offset(Knot *root, uint32_t start_offset, uint32_t *out_len);
// Used to search for a pattern in the rope // Used to search for a pattern in the rope
// Pattern is a null terminated string representing a regular expression (DFA // Pattern is a null terminated string representing a regular expression (DFA
// compliant) I.e some forms of backtracking etc. are not supported // compliant) I.e some forms of backtracking etc. are not supported

View File

@@ -2,10 +2,14 @@
#define TS_H #define TS_H
#include "./editor.h" #include "./editor.h"
#include <pcre2.h>
#define HEX(s) (static_cast<uint32_t>(std::stoul(s, nullptr, 16))) #define HEX(s) (static_cast<uint32_t>(std::stoul(s, nullptr, 16)))
extern std::unordered_map<std::string, pcre2_code *> regex_cache;
TSQuery *load_query(const char *query_path, Editor *editor); TSQuery *load_query(const char *query_path, Editor *editor);
void ts_collect_spans(Editor *editor); void ts_collect_spans(Editor *editor);
void clear_regex_cache();
#endif #endif

View File

@@ -12,8 +12,11 @@ Editor *new_editor(const char *filename, Coord position, Coord size) {
return nullptr; return nullptr;
uint32_t len = 0; uint32_t len = 0;
char *str = load_file(filename, &len); char *str = load_file(filename, &len);
if (!str) if (!str) {
free_editor(editor);
log("me?");
return nullptr; return nullptr;
}
editor->filename = filename; editor->filename = filename;
editor->position = position; editor->position = position;
editor->size = size; editor->size = size;

View File

@@ -5,22 +5,14 @@
#include <atomic> #include <atomic>
#include <chrono> #include <chrono>
#include <cstdint> #include <cstdint>
#include <iostream>
#include <sys/ioctl.h> #include <sys/ioctl.h>
#include <thread> #include <thread>
std::atomic<bool> running{true}; std::atomic<bool> running{true};
Queue<KeyEvent> event_queue; Queue<KeyEvent> event_queue;
std::atomic<uint64_t> render_frames{0};
std::atomic<uint64_t> worker_frames{0};
auto start_time = std::chrono::high_resolution_clock::now();
void background_worker(Editor *editor) { void background_worker(Editor *editor) {
while (running) { while (running) {
worker_frames++;
ts_collect_spans(editor); ts_collect_spans(editor);
std::this_thread::sleep_for(std::chrono::milliseconds(16)); std::this_thread::sleep_for(std::chrono::milliseconds(16));
@@ -164,7 +156,7 @@ void handle_editor_event(Editor *editor, KeyEvent event) {
int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
Coord screen = start_screen(); Coord screen = start_screen();
const char *filename = (argc > 1) ? argv[1] : "ts.cpp"; const char *filename = (argc > 1) ? argv[1] : "";
Editor *editor = new_editor(filename, {0, 0}, {screen.row, screen.col}); Editor *editor = new_editor(filename, {0, 0}, {screen.row, screen.col});
if (!editor) { if (!editor) {
@@ -173,14 +165,10 @@ int main(int argc, char *argv[]) {
return 1; return 1;
} }
start_time = std::chrono::high_resolution_clock::now();
std::thread input_thread(input_listener); std::thread input_thread(input_listener);
std::thread work_thread(background_worker, editor); std::thread work_thread(background_worker, editor);
while (running) { while (running) {
render_frames++;
KeyEvent event; KeyEvent event;
while (event_queue.pop(event)) while (event_queue.pop(event))
handle_editor_event(editor, event); handle_editor_event(editor, event);
@@ -196,20 +184,9 @@ int main(int argc, char *argv[]) {
if (work_thread.joinable()) if (work_thread.joinable())
work_thread.join(); work_thread.join();
auto end_time = std::chrono::high_resolution_clock::now();
double seconds = std::chrono::duration<double>(end_time - start_time).count();
double render_fps = render_frames / seconds;
double worker_fps = worker_frames / seconds;
end_screen(); end_screen();
std::cout << "\n======= Performance Summary =======\n";
std::cout << "Runtime: " << seconds << "s\n";
std::cout << "Render loop FPS: " << render_fps << "Hz\n";
std::cout << "Worker loop FPS: " << worker_fps << "Hz\n";
std::cout << "===================================\n";
free_editor(editor); free_editor(editor);
clear_regex_cache();
return 0; return 0;
} }

View File

@@ -25,6 +25,18 @@ static void update(Knot *n) {
n->chunk_size = n->left ? n->left->chunk_size : n->right->chunk_size; n->chunk_size = n->left ? n->left->chunk_size : n->right->chunk_size;
} }
uint32_t optimal_chunk_size(uint64_t length) {
if (length <= MIN_CHUNK_SIZE)
return MIN_CHUNK_SIZE;
double target_exponent = MIN(std::log2((double)MAX_CHUNK_SIZE),
7.0 + (std::log2((double)length) - 10.0) * 0.25);
uint32_t final_chunk_size =
MAX((uint32_t)MIN_CHUNK_SIZE, (uint32_t)std::pow(2.0, target_exponent));
final_chunk_size = MIN(final_chunk_size, (uint32_t)MAX_CHUNK_SIZE);
final_chunk_size = 1U << (32 - __builtin_clz(final_chunk_size - 1));
return final_chunk_size;
}
// str is not consumed and \0 is not handled // str is not consumed and \0 is not handled
// So if str is null terminated then len must be strlen(str) // So if str is null terminated then len must be strlen(str)
// and freed by caller // and freed by caller
@@ -570,31 +582,32 @@ char *next_line(LineIterator *it) {
return nullptr; return nullptr;
} }
LeafIterator *begin_k_iter(Knot *root) { LeafIterator *begin_k_iter(Knot *root, uint32_t start_offset) {
if (!root) if (!root)
return nullptr; return nullptr;
LeafIterator *it = (LeafIterator *)malloc(sizeof(LeafIterator)); LeafIterator *it = (LeafIterator *)malloc(sizeof(LeafIterator));
if (!it) if (!it)
return nullptr; return nullptr;
it->top = 0; it->top = 0;
it->adjustment = 0;
Knot *curr = root; Knot *curr = root;
while (curr) { while (curr) {
it->stack[it->top++] = curr; it->stack[it->top++] = curr;
if (!curr->left && !curr->right) { if (!curr->left && !curr->right) {
if (start_offset > curr->char_count) {
free(it);
return nullptr;
}
it->node = curr; it->node = curr;
it->adjustment = start_offset;
return it; return it;
} }
curr = curr->left; uint32_t left_size = (curr->left) ? curr->left->char_count : 0;
if (!curr) { if (start_offset < left_size) {
curr = it->stack[--it->top]->right; curr = curr->left;
Knot *temp = it->stack[it->top]; } else {
it->stack[it->top++] = temp; start_offset -= left_size;
curr = temp->left ? temp->left : temp->right; curr = curr->right;
Knot *parent = it->stack[it->top - 1];
curr = parent->left;
if (!curr) {
curr = parent->right;
}
} }
} }
free(it); free(it);
@@ -602,11 +615,14 @@ LeafIterator *begin_k_iter(Knot *root) {
} }
// Caller must never free the returned string // Caller must never free the returned string
char *next_leaf(LeafIterator *it) { char *next_leaf(LeafIterator *it, uint32_t *out_len) {
if (!it || !it->node) if (!it || !it->node)
return nullptr; return nullptr;
char *data_to_return = it->node->data; char *data_to_return = it->node->data + it->adjustment;
data_to_return[it->node->char_count] = '\0'; if (out_len)
*out_len = it->node->char_count - it->adjustment;
it->node->data[it->node->char_count] = '\0';
it->adjustment = 0;
Knot *prev_leaf = it->node; Knot *prev_leaf = it->node;
Knot *parent = nullptr; Knot *parent = nullptr;
while (it->top > 0) { while (it->top > 0) {
@@ -632,7 +648,7 @@ char *next_leaf(LeafIterator *it) {
ByteIterator *begin_b_iter(Knot *root) { ByteIterator *begin_b_iter(Knot *root) {
ByteIterator *b_it = (ByteIterator *)malloc(sizeof(ByteIterator)); ByteIterator *b_it = (ByteIterator *)malloc(sizeof(ByteIterator));
LeafIterator *l_it = begin_k_iter(root); LeafIterator *l_it = begin_k_iter(root, 0);
b_it->it = l_it; b_it->it = l_it;
b_it->offset_g = 0; b_it->offset_g = 0;
b_it->offset_l = 0; b_it->offset_l = 0;
@@ -647,21 +663,46 @@ char next_byte(ByteIterator *it) {
} else { } else {
it->offset_g += it->offset_l; it->offset_g += it->offset_l;
it->offset_l = 1; it->offset_l = 1;
char *data = next_leaf(it->it); char *data = next_leaf(it->it, &it->char_count);
if (!data) if (!data)
return '\0'; return '\0';
it->char_count = strlen(data);
while (it->char_count <= 0) { while (it->char_count <= 0) {
data = next_leaf(it->it); data = next_leaf(it->it, &it->char_count);
if (!data) if (!data)
return '\0'; return '\0';
it->char_count = strlen(data);
} }
it->data = data; it->data = data;
return *it->data; return *it->data;
} }
} }
// Caller must NOT free returned string.
// Returns nullptr if offset is invalid or no leaf found.
char *leaf_from_offset(Knot *root, uint32_t start_offset, uint32_t *out_len) {
if (!root)
return nullptr;
Knot *curr = root;
while (curr) {
if (!curr->left && !curr->right) {
if (start_offset > curr->char_count)
return nullptr;
char *result = curr->data + start_offset;
if (out_len)
*out_len = curr->char_count - start_offset;
curr->data[curr->char_count] = '\0';
return result;
}
uint32_t left_size = curr->left ? curr->left->char_count : 0;
if (start_offset < left_size) {
curr = curr->left;
} else {
start_offset -= left_size;
curr = curr->right;
}
}
return nullptr;
}
std::vector<std::pair<size_t, size_t>> search_rope(Knot *root, std::vector<std::pair<size_t, size_t>> search_rope(Knot *root,
const char *pattern) { const char *pattern) {
std::vector<std::pair<size_t, size_t>> results; std::vector<std::pair<size_t, size_t>> results;
@@ -675,7 +716,7 @@ std::vector<std::pair<size_t, size_t>> search_rope(Knot *root,
} }
pcre2_match_data *mdata = pcre2_match_data_create(128, nullptr); pcre2_match_data *mdata = pcre2_match_data_create(128, nullptr);
int workspace[PCRE_WORKSPACE_SIZE]; int workspace[PCRE_WORKSPACE_SIZE];
LeafIterator *it = begin_k_iter(root); LeafIterator *it = begin_k_iter(root, 0);
if (!it) { if (!it) {
pcre2_code_free(re); pcre2_code_free(re);
pcre2_match_data_free(mdata); pcre2_match_data_free(mdata);
@@ -686,7 +727,7 @@ std::vector<std::pair<size_t, size_t>> search_rope(Knot *root,
bool match_in_progress = false; bool match_in_progress = false;
int flags = PCRE2_PARTIAL_SOFT; int flags = PCRE2_PARTIAL_SOFT;
while (1) { while (1) {
const char *chunk_start = next_leaf(it); const char *chunk_start = next_leaf(it, nullptr);
if (!chunk_start) if (!chunk_start)
break; break;
size_t chunk_len = strlen(chunk_start); size_t chunk_len = strlen(chunk_start);
@@ -755,14 +796,125 @@ std::vector<std::pair<size_t, size_t>> search_rope(Knot *root,
return results; return results;
} }
uint32_t optimal_chunk_size(uint64_t length) { // TODO: Optimize and make it actually utilize capture groups etc.
if (length <= MIN_CHUNK_SIZE) //
return MIN_CHUNK_SIZE; // static const size_t MAX_OVERLAP = 1024;
double target_exponent = MIN(std::log2((double)MAX_CHUNK_SIZE), //
7.0 + (std::log2((double)length) - 10.0) * 0.25); // std::vector<std::pair<size_t, size_t>> search_rope_new(Knot *root,
uint32_t final_chunk_size = // const char *pattern) {
MAX((uint32_t)MIN_CHUNK_SIZE, (uint32_t)std::pow(2.0, target_exponent)); // std::vector<std::pair<size_t, size_t>> results;
final_chunk_size = MIN(final_chunk_size, (uint32_t)MAX_CHUNK_SIZE); // int errorcode;
final_chunk_size = 1U << (32 - __builtin_clz(final_chunk_size - 1)); // PCRE2_SIZE erroffset;
return final_chunk_size; //
} // // 1. Compile (Standard compilation)
// pcre2_code *re = pcre2_compile((PCRE2_SPTR)pattern, PCRE2_ZERO_TERMINATED,
// 0,
// &errorcode, &erroffset, nullptr);
// if (!re) {
// fprintf(stderr, "PCRE2 compile error: %d\n", errorcode);
// return results;
// }
//
// pcre2_match_data *mdata = pcre2_match_data_create_from_pattern(re,
// nullptr);
//
// LeafIterator *it = begin_k_iter(root, 0);
// if (!it) {
// pcre2_code_free(re);
// pcre2_match_data_free(mdata);
// return results;
// }
//
// // Buffer to hold (Last X chars) + (Current Chunk)
// std::string buffer;
//
// // Tracks where the *start* of the current buffer is located relative to
// the
// // whole rope
// size_t buffer_abs_offset = 0;
//
// // Tracks the absolute offset up to which we have already "cleared"
// matches.
// // This prevents reporting a match twice if it sits inside the overlap
// region. size_t processed_up_to_abs = 0;
//
// while (1) {
// // 2. Get next chunk
// const char *chunk_start = next_leaf(it, nullptr);
// if (!chunk_start)
// break;
//
// // 3. Update Buffer: Append new data
// size_t chunk_len = strlen(chunk_start);
// buffer.append(chunk_start, chunk_len);
//
// PCRE2_SPTR subject = (PCRE2_SPTR)buffer.c_str();
// size_t subject_len = buffer.length();
// size_t start_offset = 0;
//
// // 4. Run pcre2_match loop on the current window
// while (true) {
// int rc = pcre2_match(re, subject, subject_len, start_offset,
// 0, // Default options
// mdata, nullptr);
//
// if (rc < 0) {
// // No match (or error) in the rest of this buffer
// break;
// }
//
// PCRE2_SIZE *ovector = pcre2_get_ovector_pointer(mdata);
// size_t match_local_start = ovector[0];
// size_t match_local_end = ovector[1];
//
// // Calculate Absolute Coordinates
// size_t match_abs_start = buffer_abs_offset + match_local_start;
// size_t match_len = match_local_end - match_local_start;
//
// // 5. Deduplication Check
// // If we find a match that starts *before* where we finished processing
// // the previous chunk, it means this match is entirely inside the
// // overlap region and was reported in the previous iteration.
// if (match_abs_start >= processed_up_to_abs) {
// results.push_back(std::make_pair(match_abs_start, match_len));
// // Update processed marker so we don't report this again
// // (Using start + 1 ensures we allow overlapping matches if regex
// // allows, but strictly prevents the exact same start index being
// // reported twice)
// processed_up_to_abs = match_abs_start + 1;
// }
//
// // Prepare for next match in this buffer
// start_offset = match_local_end;
//
// // Handle empty matches (e.g. "a*" matching empty string) to prevent
// // infinite loop
// if (match_local_end == match_local_start) {
// if (start_offset < subject_len) {
// start_offset++;
// } else {
// break; // End of buffer
// }
// }
// }
//
// // 6. Maintenance: Shrink buffer to keep only the last MAX_OVERLAP
// // characters
// if (buffer.length() > MAX_OVERLAP) {
// size_t to_remove = buffer.length() - MAX_OVERLAP;
//
// // Remove from the beginning of the string
// buffer.erase(0, to_remove);
//
// // The buffer's start has now moved forward in absolute terms
// buffer_abs_offset += to_remove;
// }
// }
//
// // Cleanup
// pcre2_match_data_free(mdata);
// pcre2_code_free(re);
// free(it); // Assuming iter needs free based on original code usage
//
// return results;
// }

View File

@@ -8,7 +8,27 @@
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
static std::unordered_map<std::string, std::regex> regex_cache; std::unordered_map<std::string, pcre2_code *> regex_cache;
void clear_regex_cache() {
for (auto &kv : regex_cache) {
pcre2_code_free(kv.second);
}
regex_cache.clear();
}
pcre2_code *get_re(const std::string &pattern) {
auto it = regex_cache.find(pattern);
if (it != regex_cache.end())
return it->second;
int errornum;
PCRE2_SIZE erroffset;
pcre2_code *re =
pcre2_compile((PCRE2_SPTR)pattern.c_str(), PCRE2_ZERO_TERMINATED, 0,
&errornum, &erroffset, nullptr);
regex_cache[pattern] = re;
return re;
}
static const std::regex scm_regex( static const std::regex scm_regex(
R"((@[A-Za-z0-9_.]+)|(;; \#[0-9a-fA-F]{6} \#[0-9a-fA-F]{6} [01] [01] [01] \d+))"); R"((@[A-Za-z0-9_.]+)|(;; \#[0-9a-fA-F]{6} \#[0-9a-fA-F]{6} [01] [01] [01] \d+))");
@@ -94,8 +114,6 @@ static inline bool ts_predicate(TSQuery *query, const TSQueryMatch &match,
ts_query_predicates_for_pattern(query, match.pattern_index, &step_count); ts_query_predicates_for_pattern(query, match.pattern_index, &step_count);
if (!steps || step_count != 4) if (!steps || step_count != 4)
return true; return true;
if (source->char_count >= (16 * 1024))
return false;
std::string command; std::string command;
std::string regex_txt; std::string regex_txt;
uint32_t subject_id = 0; uint32_t subject_id = 0;
@@ -124,15 +142,13 @@ static inline bool ts_predicate(TSQuery *query, const TSQueryMatch &match,
} }
const TSNode *node = find_capture_node(match, subject_id); const TSNode *node = find_capture_node(match, subject_id);
std::string subject = node_text(*node, source); std::string subject = node_text(*node, source);
auto it = regex_cache.find(regex_txt); pcre2_code *re = get_re(regex_txt);
if (it == regex_cache.end()) pcre2_match_data *md = pcre2_match_data_create_from_pattern(re, nullptr);
it = regex_cache.emplace(regex_txt, std::regex(regex_txt)).first; int rc = pcre2_match(re, (PCRE2_SPTR)subject.c_str(), subject.size(), 0, 0,
const std::regex &re = it->second; md, nullptr);
if (command == "match?") pcre2_match_data_free(md);
return std::regex_match(subject, re); bool ok = (rc >= 0);
else if (command == "not-match?") return (command == "match?" ? ok : !ok);
return !std::regex_match(subject, re);
return false;
} }
const char *read_ts(void *payload, uint32_t byte_index, TSPoint, const char *read_ts(void *payload, uint32_t byte_index, TSPoint,
@@ -141,24 +157,12 @@ const char *read_ts(void *payload, uint32_t byte_index, TSPoint,
*bytes_read = 0; *bytes_read = 0;
return ""; return "";
} }
TSLoad *load = (TSLoad *)payload; Editor *editor = (Editor *)payload;
Knot *root = load->editor->root; if (byte_index >= editor->root->char_count) {
if (load->prev)
free(load->prev);
if (byte_index >= root->char_count) {
*bytes_read = 0; *bytes_read = 0;
load->prev = nullptr;
return ""; return "";
} }
uint32_t chunk_size = 4096; return leaf_from_offset(editor->root, byte_index, bytes_read);
uint32_t remaining = root->char_count - byte_index;
uint32_t len_to_read = remaining > chunk_size ? chunk_size : remaining;
std::shared_lock lock(load->editor->knot_mtx);
char *buffer = read(root, byte_index, len_to_read);
lock.unlock();
load->prev = buffer;
*bytes_read = len_to_read;
return buffer;
} }
static inline Highlight *safe_get(std::vector<Highlight> &vec, size_t index) { static inline Highlight *safe_get(std::vector<Highlight> &vec, size_t index) {
@@ -170,9 +174,8 @@ static inline Highlight *safe_get(std::vector<Highlight> &vec, size_t index) {
void ts_collect_spans(Editor *editor) { void ts_collect_spans(Editor *editor) {
if (!editor->parser || !editor->root || !editor->query) if (!editor->parser || !editor->root || !editor->query)
return; return;
TSLoad load = {editor, nullptr};
TSInput tsinput = { TSInput tsinput = {
.payload = &load, .payload = editor,
.read = read_ts, .read = read_ts,
.encoding = TSInputEncodingUTF8, .encoding = TSInputEncodingUTF8,
.decode = nullptr, .decode = nullptr,
@@ -196,7 +199,12 @@ void ts_collect_spans(Editor *editor) {
return; return;
} }
editor->spans.mid_parse = true; editor->spans.mid_parse = true;
// TODO: Remove this lock and replace with an index
// modifier based on edits made in the `read_ts` function.
std::shared_lock lock(editor->knot_mtx);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
tree = ts_parser_parse(editor->parser, copy, tsinput); tree = ts_parser_parse(editor->parser, copy, tsinput);
lock.unlock();
if (copy) if (copy)
ts_tree_delete(copy); ts_tree_delete(copy);
knot_mtx.lock(); knot_mtx.lock();
@@ -228,8 +236,6 @@ void ts_collect_spans(Editor *editor) {
} }
ts_query_cursor_delete(cursor); ts_query_cursor_delete(cursor);
ts_tree_delete(copy); ts_tree_delete(copy);
if (load.prev)
free(load.prev);
if (!running) if (!running)
return; return;
std::sort(new_spans.begin(), new_spans.end()); std::sort(new_spans.begin(), new_spans.end());