Files
knot/tests/benchmark.cpp

343 lines
9.8 KiB
C++

#include "../api/rope.hpp"
#include <chrono>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <regex>
#include <string>
// Include the user's header
// --- Timer Helper ---
class Timer {
using Clock = std::chrono::high_resolution_clock;
std::chrono::time_point<Clock> start_time;
public:
Timer() { reset(); }
void reset() { start_time = Clock::now(); }
double elapsed_ms() {
auto end_time = Clock::now();
return std::chrono::duration<double, std::milli>(end_time - start_time)
.count();
}
};
// --- Formatting Helper ---
void print_result(const std::string &test_name, double rope_ms, double str_ms) {
std::cout << std::left << std::setw(25) << test_name
<< " | Rope: " << std::setw(10) << std::fixed
<< std::setprecision(3) << rope_ms << " ms"
<< " | String: " << std::setw(10) << str_ms << " ms"
<< " | Ratio (Str/Rope): " << std::setprecision(2) << std::setw(10)
<< (str_ms / rope_ms) << "x" << " | " << std::fixed << " So "
<< ((str_ms - rope_ms) <= 0 ? "string" : "rope ")
<< " is faster by " << std::fabs(str_ms - rope_ms) << " ms"
<< std::endl;
}
int main() {
// 1. DATA GENERATION
std::cout << "Generating ~1GiB dataset..." << std::endl;
const std::string pattern = "The quick brown fox jumps over the lzy dog.\n";
// Target ~100 MiB (100 * 1024 * 1024 bytes)
const size_t target_size = 1024 * 1024 * 1024;
std::string source_data;
source_data.reserve(target_size + pattern.size());
while (source_data.size() < target_size)
source_data.append(pattern);
uint32_t total_len = static_cast<uint32_t>(source_data.size());
std::cout << "Dataset generated. Size: " << total_len << " bytes.\n"
<< std::endl;
Timer t;
double rope_time, str_time;
// ==========================================
// TEST 1: LOAD / CREATION
// ==========================================
// Rope Load
t.reset();
uint32_t chunk_size = optimal_chunk_size(total_len);
// Note: Cast to char* because header asks for char*, usually strings are
// const char*
Knot *root =
load(const_cast<char *>(source_data.c_str()), total_len, chunk_size);
rope_time = t.elapsed_ms();
// String Load (Copy)
t.reset();
std::string str_copy = source_data;
str_time = t.elapsed_ms();
print_result("Load / Create", rope_time, str_time);
// ==========================================
// TEST 2: INSERT (Middle)
// ==========================================
std::string insert_pattern = " [INSERTED TEXT] ";
uint32_t insert_pos = total_len / 2;
// Rope Insert
t.reset();
root = insert(root, insert_pos, const_cast<char *>(insert_pattern.c_str()),
(uint32_t)insert_pattern.size());
rope_time = t.elapsed_ms();
// String Insert
t.reset();
str_copy.insert(insert_pos, insert_pattern);
str_time = t.elapsed_ms();
print_result("Insert (Middle)", rope_time, str_time);
// ==========================================
// TEST 3: READ / SUBSTR
// ==========================================
uint32_t read_len = 1024;
uint32_t read_pos = total_len / 2; // Read from where we just inserted
// Rope Read
t.reset();
char *rope_read_res = read(root, read_pos, read_len);
rope_time = t.elapsed_ms();
free(rope_read_res); // Free result as per header
// String Substr
t.reset();
std::string str_read_res = str_copy.substr(read_pos, read_len);
str_time = t.elapsed_ms();
print_result("Read / Substr (1KiB)", rope_time, str_time);
// ==========================================
// TEST 4: CONCATENATION
// ==========================================
// Create a temporary rope to append
Knot *suffix_rope = load(const_cast<char *>(pattern.c_str()),
(uint32_t)pattern.size(), chunk_size);
// Rope Concat
t.reset();
root = concat(root, suffix_rope);
rope_time = t.elapsed_ms();
// String Append
t.reset();
str_copy += pattern;
str_time = t.elapsed_ms();
print_result("Concat (Append small)", rope_time, str_time);
Knot *large_rope =
load(const_cast<char *>(source_data.c_str()), total_len, chunk_size);
// Rope Concat
t.reset();
root = concat(root, large_rope);
rope_time = t.elapsed_ms();
Knot *L = nullptr;
Knot *R = nullptr;
split(root, total_len, &L, &R);
root = L;
free_rope(R);
// String Append
t.reset();
str_copy += source_data;
str_time = t.elapsed_ms();
print_result("Concat (Append large)", rope_time, str_time);
// ==========================================
// TEST 5: ERASE
// ==========================================
uint32_t erase_len = 5000; // Erase 5KB
uint32_t erase_pos = total_len / 4;
// Rope Erase
t.reset();
root = erase(root, erase_pos, erase_len);
rope_time = t.elapsed_ms();
// String Erase
t.reset();
str_copy.erase(erase_pos, erase_len);
str_time = t.elapsed_ms();
print_result("Erase (5KB)", rope_time, str_time);
// ==========================================
// TEST 6: LINE TO BYTE (Indexing)
// ==========================================
// Pick a line number deep in the file
uint32_t target_line = 100000;
uint32_t out_len = 0;
// Rope Line Lookup
t.reset();
volatile uint32_t r_offset = line_to_byte(root, target_line, &out_len);
rope_time = t.elapsed_ms();
// String Line Lookup (Simulated: Must scan for newlines)
t.reset();
size_t current_line = 0;
size_t s_offset = 0;
// Manual scan is the standard way for std::string
for (size_t i = 0; i < str_copy.size(); ++i) {
if (str_copy[i] == '\n') {
current_line++;
if (current_line == target_line) {
s_offset = i + 1; // Start of next line
break;
}
}
}
str_time = t.elapsed_ms();
print_result("Line -> Byte Offset", rope_time, str_time);
// ==========================================
// TEST 7: BYTE TO LINE
// ==========================================
uint32_t target_offset = total_len / 2;
// Rope Byte Lookup
t.reset();
volatile uint32_t r_line = byte_to_line(root, target_offset);
rope_time = t.elapsed_ms();
// String Byte Lookup (Simulated scan backwards or from start)
t.reset();
size_t s_line = 0;
for (size_t i = 0; i < target_offset && i < str_copy.size(); ++i) {
if (str_copy[i] == '\n')
s_line++;
}
str_time = t.elapsed_ms();
print_result("Byte Offset -> Line", rope_time, str_time);
// ==========================================
// TEST 8: LINE ITERATION (Next 1000 lines)
// ==========================================
int lines_to_read = 1000;
uint32_t start_iter_line = 50000;
// Rope Iteration
t.reset();
LineIterator *lit = begin_l_iter(root, start_iter_line);
for (int i = 0; i < lines_to_read; ++i) {
char *line = next_line(lit);
if (line)
free(line); // Must free per header
else
break;
}
// Note: Assuming `free(lit)` or similar is needed,
// though header says "returned iterator must be freed".
// I will assume standard `delete` or `free` works on the struct pointer.
free(lit);
rope_time = t.elapsed_ms();
// String Iteration
// To be fair, we find the starting offset, then read lines
t.reset();
size_t iter_offset = 0;
size_t cur_ln = 0;
// Fast forward (cost of finding start)
while (cur_ln < start_iter_line && iter_offset < str_copy.size()) {
if (str_copy[iter_offset++] == '\n')
cur_ln++;
}
// Read loop
for (int i = 0; i < lines_to_read && iter_offset < str_copy.size(); ++i) {
size_t next_nl = str_copy.find('\n', iter_offset);
if (next_nl == std::string::npos)
break;
// Simulate extracting the string
volatile std::string temp =
str_copy.substr(iter_offset, next_nl - iter_offset);
iter_offset = next_nl + 1;
}
str_time = t.elapsed_ms();
print_result("Iterate 1000 Lines", rope_time, str_time);
// ==========================================
// TEST 9: SEARCH (Regex)
// ==========================================
// Search for a specific pattern that occurs
const char *search_pattern = "brown fox";
// Rope Search (DFA/PCRE as per header)
t.reset();
auto rope_matches = search_rope(root, search_pattern);
rope_time = t.elapsed_ms();
t.reset();
try {
std::regex re(search_pattern);
auto words_begin =
std::sregex_iterator(str_copy.begin(), str_copy.end(), re);
auto words_end = std::sregex_iterator();
size_t count = 0;
for (std::sregex_iterator i = words_begin; i != words_end; ++i) {
count++;
// Don't iterate millions of times for the benchmark if it takes forever
if (count > 1000)
break;
}
} catch (...) {
}
str_time = t.elapsed_ms();
print_result("Search (Regex)", rope_time, str_time);
// ==========================================
// TEST 10: SPLIT
// ==========================================
uint32_t split_point = total_len / 2;
Knot *left_side = nullptr;
Knot *right_side = nullptr;
// Rope Split
t.reset();
// split consumes 'root', so root is invalid after this
split(root, split_point, &left_side, &right_side);
rope_time = t.elapsed_ms();
// String Split (Simulated via substr copies)
t.reset();
std::string s_left = str_copy.substr(0, split_point);
std::string s_right = str_copy.substr(split_point);
str_time = t.elapsed_ms();
print_result("Split (Half)", rope_time, str_time);
// ==========================================
// CLEANUP
// ==========================================
t.reset();
free_rope(left_side);
free_rope(right_side);
rope_time = t.elapsed_ms();
// std::string cleans up automatically, but let's time the destruction
t.reset();
{
std::string temp1 = std::move(s_left);
std::string temp2 = std::move(s_right);
} // destructors run here
str_time = t.elapsed_ms();
print_result("Free / Destruct", rope_time, str_time);
return 0;
}